
APIs as Service Activators:

olaf.zimmermann@ost.ch

Tackling the Hard Parts of Integration Design

Olaf Zimmermann

February 16, 2023

© Olaf Zimmermann, 2023.2

Abstract

API stands for application programming interface, but might as well mean access

to services via protocol for integration. Message-based APIs and the services they

expose must be carefully designed to achieve qualities such as composability,

efficiency, and evolvability; project context and application domain challenges drive

the architectural decisions required regarding communication, coordination and

consistency.

This talk introduces a stepwise, incremental and iterative design practice that

leverages proven principles and patterns to jumpstart greenfield API design and

service engineering. For brownfield scenarios, it proposes an interface refactoring

catalog to resolve design smells frequently occurring in practice. Common design

tradeoffs in these scenarios are discussed in the form of reusable Architectural

Decision Records (ADRs).

"APIs as Service Activators" at ZEUS 2023

February 16, 2023

https://microservice-api-patterns.org/book/
https://interface-refactoring.github.io/
https://medium.com/olzzio/from-architectural-decisions-to-design-decisions-f05f6d57032b

3

Who is ZIO?

Introduction

• Software Architect

• Lecturer, Author, Blogger

• Open Source Contributor

• Context Mapper
(DSL for Domain-Driven Design)

• API patterns, message/interface description MDSL

• Interface Refatoring Catalog

• Markdown ADRs, Y-Statements as a compact form of ADRs

• Lakeside Mutual microservices (sample application)

https://leanpub.com/dpr

https://medium.com/olzzio

© Olaf Zimmermann, 2023. February 16, 2023

www.api-patterns.org

https://leanpub.com/dpr
https://leanpub.com/dpr
https://medium.com/olzzio
http://www.api-patterns.org/

Agenda

• Context and motivation

• Stepwise API and service design (by example)

• Pattern languages as knowledge brokers

• A pattern language for API design

 Overview, domain model

 Selected patterns

• Refactoring to patterns

• Pattern selection decisions and other hard design concerns (tradeoffs)

• Concluding thoughts

• Pattern adoption

• Open research questions

"APIs as Service Activators" at ZEUS 2023

4 © Olaf Zimmermann, 2023. February 16, 2023

Agenda

• Context and motivation

• Stepwise API and service design (by example)

• Pattern languages as knowledge brokers

• A pattern language for API design

 Overview, domain model

 Selected patterns

• Refactoring to patterns

• Pattern selection decisions and other hard design concerns (tradeoffs)

• Concluding thoughts

• Pattern adoption

• Open research questions

"APIs as Service Activators" at ZEUS 2023

5 © Olaf Zimmermann, 2023. February 16, 2023

© Olaf Zimmermann, 2023.6

Sample Scenario: Conference Management

Context and Motivation

API user story 1: As a mobile app for a conference attendees,

I want to download a session overview from the system backend and, on demand, detailed

information about individual sessions (speaker, title, abstract, time, location, etc.)

so that they enjoy a positive learning experience and find their way through the conference.

API user story 2: As the review management application at the conference organizer,

I want to move submissions (talk proposals) in the conference management system

through a "receive – review - (accept | reject) – inform – schedule" process

so that a high-quality conference program is assured.

How much time and effort do you need to turn an API user story

into a working Web API prototype (RESTful HTTP)?

February 16, 2023

February 16, 2023© Olaf Zimmermann, 2023.7

API and Service Design Step by Step (Simplified!)

Context and Motivation

User
Story

• Agile practice

• Use cases also possible

Analysis
Model

• Domain Driven Design (DDD):
Subdomains, Entities

Design
Model

• DDD: Bounded Contexts with Aggregates

• Bounded Context Types: Feature, System

• JHipster JDL

API
Contract

• MDSL (API Contract DSL)

• Open API Specification (OAS), gRPC
Protocol Buffers, GraphQL Schema, …

Clients,
Providers

• JHipster

• Spring Boot

• JUnit

generate

generate

stubs

generate

initially

generate

Demo instructions:

https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

Elaborate version described as SSD activity in DPR:

https://socadk.github.io/design-practice-

repository/activities/SDPR-StepwiseServiceDesign.html

https://microservice-api-patterns.github.io/MDSL-Specification/
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html

February 16, 2023© Olaf Zimmermann, 2023.8

Initial Design Model (aka Candidate Endpoint List)

Context and Motivation

Many small or few large messages?

How many endpoints

and operations?

Include nested data or link to it?

Sample API: Rapid Prototyping (DEMO)

Content and Motivation

HTTP command and JSON created with:

• MDSL Web, MDSL Tools

• https://mdsl-web.up.railway.app/

• Open API Specification (OAS) tools

• https://editor.swagger.io/

• Next up would be:

• JUnit tests

• API implementation, e.g. Spring Boot beans

@Controller, @Component, @Entity

© Olaf Zimmermann, 2023.9 February 16, 2023

https://mdsl-web.up.railway.app/
https://editor.swagger.io/

Project pressure, legacy constraints

Complexity of systems

Quality goals, security needs

What are the urgent and important questions?

Architectural knowledge helps, even the experienced!
Patterns structure problem and solution domain
and can offer context-specific design guidance.

API Design is Simple?!

Context and Motivation

10 © Daniel Lübke and Olaf Zimmermann, 2023. February 16, 2023

Why Patterns?

Patterns collect and document experience with proven solutions to common problems

• Many templates:

• Name, Icon

• Context: Intent, Motivation and Applicability

• Solution Structure and its Forces

• Consequences: Benefits and Liabilities

• Examples and Implementation Hints

• Pointers to Related Patterns

• Known Uses

• Community processes/practices:

• Shepherding (coaching), writers workshops

Context and Motivation

11 © Olaf Zimmermann, 2023. February 16, 2023

(Selected) Existing Patterns Relevant for API Design

Context and Motivation

12 © Olaf Zimmermann, 2023. February 16, 2023

© Olaf Zimmermann, 2023.13

Enterprise Integration Pattern (2003): Service Activator

• https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingAdapter.html

Context and Motivation

How can an application design a service to be invoked both via various messaging

technologies and via non-messaging techniques?

Design a Service Activator that connects the

messages on the channel to the service being

accessed.

February 16, 2023

https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingAdapter.html

© Olaf Zimmermann, 2023.14

Cloud Computing Pattern (2013): Three-Tiered Cloud Application

• https://www.cloudcomputingpatterns.org/three_tier_cloud_application/

Context and Motivation

How can presentation logic, business logic, and data handling be decomposed into

separate tiers that are scaled independently?

The application is decomposed into

three [backend] tiers, where each tier

is elastically scaled independently.

February 16, 2023

https://www.cloudcomputingpatterns.org/three_tier_cloud_application/

Agenda

• Context and motivation

• Stepwise API and service design (by example)

• Pattern languages as knowledge brokers

• A pattern language for API design (and message design)

 Overview, domain model

 Selected patterns

• Refactoring to patterns

• Pattern selection decisions and other hard design concerns (tradeoffs)

• Concluding thoughts

• Pattern adoption

• Open research questions

"APIs as Service Activators" at ZEUS 2023

15 © Olaf Zimmermann, 2023. February 16, 2023

2016-2022: Microservice API Patterns (MAP)

• Distilled solution patterns from projects

• Not invented, but curated (five authors)

• 44 patterns in five categories

• Focus: architecture (endpoint roles),

data (message representations),

versioning (evolution strategies)

• API-related concepts, independent

of (but suited for) specific technologies:

• RESTful HTTP, SOAP

• GraphQL, gRPC, CORBA

• Messaging systems, event streaming

A pattern language for API design

www.api-patterns.org

16 © Olaf Zimmermann, 2023. February 16, 2023

http://www.api-patterns.org/

• From Chapter 1 of "Patterns for API Design"

• Available as sample content at Amazon.com

• Serves as vocabulary in pattern texts

© Olaf Zimmermann, 2023.17

A Domain Model for APIs

A pattern language for API design

• Abstracts from remoting technologies such as

REST, gRPC, GraphQL, WSDL/SOAP, …

 Example API Endpoint corresponds to one or more

HTTP resources (identified by URIs)

 Endpoints expose operations (not shown here)

 Validity demonstrated in MDSL tools that map and

bind API descriptions structured according to this

domain model to these technologies (and more)

February 16, 2023

https://api-patterns.org/book/

How much data
do API client and
API provider
exchange?
And how often?

Alternatives for reference management

Embedded

Entity

Linked

Information

Holder

Request

Bundle

PaginationConditional

Request

Adjusting Message Sizes and Number of Requests

more

Amount of data per message

fewer

Number of requests

more

less

unchanged

include or

exclude data

Wish List Wish Template

tailor response

message content

Amount of control and expressivity

less more

© Olaf Zimmermann, 2023.18

Quality Category

A pattern language for API design

© Olaf Zimmermann, 2023.19

Sample Pattern: Embedded Entity

A pattern language for API design

Problem: How can you avoid exchanging multiple

messages when receivers require insights from

multiple related information elements?

Solution: For any relationship that the client has to follow, embed a

Data Element in the message that contains the data of the target entity

(instead of linking to the target entity).

Forces: Performance, scalability;

flexibility and modifiability; data

quality, freshness, consistency.

online version of pattern

February 16, 2023

https://microservice-api-patterns.org/patterns/structure/elementStereotypes/DataElement
https://microservice-api-patterns.org/patterns/quality/referenceManagement/EmbeddedEntity

© Olaf Zimmermann, 2023.20

Sample Pattern: Linked Information Holder

A pattern language for API design

Problem: When exposing structured, possibly deeply

nested information elements in an API, how can you avoid

sending large messages containing lots of data that is not

always useful for the message receiver in its entirety?

Forces: Same as for

Embedded Entity.

Solution: Add a Link Element to the message that references an API endpoint. Let this API endpoint represent

the linked entity; for instance, use an Information Holder Resource for the referenced information element.

online version of pattern

February 16, 2023

https://microservice-api-patterns.org/patterns/structure/elementStereotypes/LinkElement
https://microservice-api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource
https://microservice-api-patterns.org/patterns/quality/referenceManagement/LinkedInformationHolder

© Olaf Zimmermann, 2023.21

Sample Pattern: Pagination (1/2)

• Context:

• An API endpoint and its calls have been identified and specified.

• Problem:

• How can an API provider optimize a response to an API client that should deliver large amounts of data
with the same structure?

• Forces:

• Data set size and data access profile (user needs), especially number of data records required to be
available to a consumer

• Variability of data (are all result elements identically structured? how often do data definitions change?)

• Memory available for a request (both on provider and on consumer side)

• Network capabilities (server topology, intermediaries)

• Security and robustness/reliability concerns

A pattern language for API design

February 16, 2023

© Olaf Zimmermann, 2023.22

Sample Pattern: Pagination (2/2)

• Solution:

• Divide large response data sets into manageable and easy-to-transmit chunks.

• Send only partial results in the first response message and inform the consumer how additional results
can be obtained/retrieved incrementally.

• Process some or all partial responses on the consumer side iteratively as needed; agree on a request
correlation and intermediate/partial results termination policy on consumer and provider side.

• Variants:

• Cursor-based vs. offset-based

• Consequences:

• E.g. state management required

• Know Uses:

• Public APIs of social networks

A pattern language for API design

February 16, 2023

© Olaf Zimmermann, 2023.23

Sample Pattern: Wish List (1/2)

A pattern language for API design

• Problem:

• How can an API client inform the API provider

at runtime about the data it is interested in?

• Forces (selection):

• Client diversity, message size vs. number of messages

• Endpoint complexity

• Solution:

• As an API client, provide a Wish List in the request that enumerates all

desired data elements of the requested resource.

https://api-patterns.org/patterns/quality/dataTransferParsimony/WishList

February 16, 2023

https://api-patterns.org/patterns/quality/dataTransferParsimony/WishList

Sample Pattern: Wish List (2/2)

A pattern language for API design

• Known uses:

• Found in many Web and product APIs, e.g.

Atlassian Jira

• Variations:

• Expansion, wild cards (*), query expression

(GraphQL!)

• Alternative:

• Wish Template (structured, mock object

rather than flat name list)

• Example:

© Olaf Zimmermann, 2023.24

curl -X GET

http://localhost:8080/customers/gktlipwhjr?fields=

customerId,birthday,postalCode

{

"customerId": "gktlipwhjr",

"birthday": "1989-12-31T23:00:00.000+0000",

"postalCode": "8640"

}

February 16, 2023

Website and Book: api-patterns.org

A pattern language for API design

February 16, 2023
© Olaf Zimmermann, 2023.

25

Agenda

• Context and motivation

• Stepwise API and service design (by example)

• Pattern languages as knowledge brokers

• A pattern language for API design (and message design)

 Overview, domain model

 Selected patterns

• Refactoring to patterns

• Pattern selection decisions and other hard design concerns (tradeoffs)

• Concluding thoughts

• Pattern adoption

• Open research questions

"APIs as Service Activators" at ZEUS 2023

26 © Olaf Zimmermann, 2023. February 16, 2023

© Olaf Zimmermann, 2023.27

Interface Refactoring Catalog (Emerging)

https://interface-refactoring.github.io/ (joint work with Mirko Stocker)

February 16, 2023

https://interface-refactoring.github.io/

© Olaf Zimmermann, 2023.28

From API Design Smells to Refactorings: Smell Browser

https://interface-refactoring.github.io/ (joint work with Mirko Stocker)

February 16, 2023

https://interface-refactoring.github.io/

© Olaf Zimmermann, 2023.29

MDSL Web: Refactorings as Model Transformations

Refactoring to patterns

https://mdsl-web.up.railway.app
Both forward engineering and refactoring

supported by MDSL transformations

February 16, 2023

https://mdsl-web.up.railway.app/

Agenda

• Context and motivation

• Stepwise API and service design (by example)

• Pattern languages as knowledge brokers

• A pattern language for API design (and message design)

 Overview, domain model

 Selected patterns

• Refactoring to patterns

• Pattern selection decisions and other hard design concerns (tradeoffs)

• Concluding thoughts

• Pattern adoption

• Open research questions

"APIs as Service Activators" at ZEUS 2023

30 © Olaf Zimmermann, 2023. February 16, 2023

https://adr.github.io/

https://adr.github.io/

© Olaf Zimmermann, 2023.31

My Architectural Decision (AD) Journey 1998 – 2022

Architectural Decisions

IBM SI Method,
Architectural

Thinking Class
(since 1998)

JEE, Web
Services and

SOA client
projects

(IBM,
1999-2005)

Perspectives on
Web Services

Book
(Springer 2003)

Patterns for API

Design Book

(2022)

MADR

Project

(2017-

present)

Y-Statements

(ABB, 2012)

SOAD PhD, SDA:

IBM Reference

Architectures,

Guidance Models,

App. Wiki, Tool

Prototypes

(2006-2011)

Blog posts

(2020-present)

Design Practice

Repository and Design

Practice Reference

eBook (LeanPub, 2021)

Bachelor Lecture

AppArch, Applied

Research & Dev.

(2013-present)

ARC-100 AD

table (Word)
26 recurring decisions

listed (WSDL, SOAP, …)

ADs inlined in SAD
100+ recurring ADs modelled

(Issues, Alternatives, Outcomes)

EAM Project,

PowerPoint table

Templates, IEEE 42010

ADMentor (UML Profile, EA Plugin)
Chapter 3: 29

pattern ADs,

6 narratives

ASR Test, DoD, …

Y-Artifact,

ADR activity

.md template, tools

February 16, 2023

© Olaf Zimmermann, 2023.32

Y-Template (ABB Software Dev. Improvement Initiative)

Architectural Decisions

In the context of <use case uc

and/or component co>,
… facing <non-functional concern c>,

… we decided for <option o1>

… to achieve <quality q>,

and neglected <options o2 to on>,

… accepting downside <consequence c>.

(somewhat) adopted by the community, examples:

https://cards42.org/#adr and https://herbertograca.com/2019/08/12/documenting-software-architecture/

Reference: ABB, SATURN 2012

February 16, 2023

https://cards42.org/#adr
https://herbertograca.com/2019/08/12/documenting-software-architecture/

© Olaf Zimmermann, 2023.33

Exercise: API Design with Patterns (Sample System)

• Let's capture a pattern selection AD (in the Conference Management scenario)

• See Chapter 3 of our book for examples

Architectural Decisions

February 16, 2023

In the context of API user story 1

(session information download),

facing client diversity, (sometimes) slow networks

and sub-second response time requirements,

we decided to expose two

Retrieval Operations in the API

endpoint, one embedding detailed

information and one linking to it

to achieve the required performance and a splendid developer experience,

and neglected usage of other quality patterns

(such as Wish List and Pagination)

accepting that implantation and test effort

almost doubles.

© Olaf Zimmermann, 2023.34

Markdown Architectural/Any Decision Records (MADR)

"The Markdown ADR (MADR) Template Explained and Distilled" on Medium has details

… and there is a ZEUS 2018 paper about template, concepts, tools (Oliver Kopp et al)

Architectural Decisions

February 16, 2023

Where is the Markdown?

[In the GitHub repo](https://madr.hithub.io)

https://medium.com/olzzio/the-markdown-adr-madr-template-explained-and-distilled-b67603ec95bb

© Olaf Zimmermann, 2023.35

API/Service Design: The Hard Parts

• Communication

• Synchronous vs. asynchronous

• Coordination

• Central(ized) vs. decentral(ized)

• Consistency

 Strict vs. eventual

Architectural Decisions

What is the relationship

between these recurring ADs

and API design?

February 16, 2023

What are the pros and cons of these options?

Video by Neil Ford, TL;DR: "tradeoffs, always"

https://www.youtube.com/watch?v=v55IV8IhwKM

© Olaf Zimmermann, 2023.36

Frontend BPM vs. BPM-as-a-Service
• Business Activity Processor variant of

State Transition Operation pattern

• Book, website archive, EuroPLoP 2020 paper

• Each API operation realizes one state
transition, whose mileage may wary:

• Entire business process

• Single activity

• General state machine to be adapted
according to domain requirements

• E.g. DDD, Context Mapper DSL and tools

• Technology mapping:

• HTTP POST, PUT, PATCH

• Mutations in GraphQL

Architectural Decisions in API Design

February 16, 2023

https://api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation
https://web.archive.org/web/20220224172623/https:/microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation#sec:StateTransitionOperation:Solution

Agenda

• Context and motivation

• Stepwise API and service design (by example)

• Pattern languages as knowledge brokers

• A pattern language for API design

 Overview, domain model

 Selected patterns

• Refactoring to patterns

• Pattern selection decisions and other hard design concerns (tradeoffs)

• Concluding thoughts

• Pattern adoption

• Open research questions

"APIs as Service Activators" at ZEUS 2023

37 © Olaf Zimmermann, 2023. February 16, 2023

38

Discussion

Concluding Thoughts

• Do the patterns names work for you?

• Do the presented solutions make sense?

• Which patterns might be missing?

• Pros and cons of the options

• for API design/architecture decisions

• Sample scenarios

February 16, 2023© Olaf Zimmermann, 2023.

https://www.linkedin.com/pulse/api-design-pattern-week-pagination-olaf-zimmermann/?trackingId=VuCB%2B5fbRvWu68S6ccky0w%3D%3D

© Olaf Zimmermann, 2023.39

Ongoing Research, Future Research Topics

• API refactoring, architectural refactoring knowledge and tools

• First slice of catalog submitted to EuroPLoP 2023

• Language, framework and tool support for the patterns

• MDSL, Jolie (a microserivce programming language)

• Methods and tools for reengineering "monolith to microservices"

• Bring back the notion of guidance models (ADs first)? See Chapter 3 of our book.

• Events and APIs (aka asynchronous integration)

• AI/ML for API design and documentation?

• Ethical (Empathic?) Software Engineering

Concluding Thoughts

February 16, 2023

40

More Information: api-patterns.org and blogs

• https://ozimmer.ch/blog/ und (shortened subset) https://docsoc.medium.com/

Concluding Thoughts

https://microservice-api-

patterns.org/publications
https://www.youtube.com/watch?v=cNp7ys0g0Bs

© Olaf Zimmermann, 2023. February 16, 2023

https://ozimmer.ch/blog/
https://docsoc.medium.com/
https://microservice-api-patterns.org/publications
https://www.youtube.com/watch?v=cNp7ys0g0Bs

Order & Save 35%*

on eBook at

informit.com/api-patterns

• Use code API-PATTERNS during checkout

• Offer only good at informit.com

• eBook – DRM-Free PDF & EPUB

Print books available**

Please check your local or online store where you

purchase technical related books.

*Discount code API-PATTERNS is only good at informit.com and cannot be used

on the already discounted book + eBook bundle or combined with any other offer.

Discount offer is subject to change.

**If your order print books from InformIT, your order is subject to import duties

and taxes, which are levied once the package reaches the destination country.

