OST
Ostschweizer !
|

Fachhochschule

APIs as Service Activators:

Tackling the Hard Parts of Integration Design

/EUS2023 sk o
15th Central
European Workshop

olaf zZimmermann@ost.ch on Services and

their Composition

Olaf Zimmermann

February 16, 2023

INSTITUTE FOR
SOFTWARE

2

"APIs as Service Activators" at ZEUS 2023

Abstract

API stands for application programming interface, but might as well mean access
to services via protocol for integration. Message-based APIs and the services they
expose must be carefully designed to achieve qualities such as composability,
efficiency, and evolvability; project context and application domain challenges drive
the architectural decisions required regarding communication, coordination and
consistency.

This talk introduces a stepwise, incremental and iterative design practice that
leverages proven principles and patterns to jumpstart greenfield API design and
service engineering. For brownfield scenarios, it proposes an interface refactoring
catalog to resolve design smells frequently occurring in practice. Common design
tradeoffs in these scenarios are discussed in the form of reusable Architectural
Decision Records (ADRS).

© Olaf Zimmermann, 2023.

February 16, 2023

https://microservice-api-patterns.org/book/
https://interface-refactoring.github.io/
https://medium.com/olzzio/from-architectural-decisions-to-design-decisions-f05f6d57032b

3

Introduction

Who i1s ZIO?

Design Practice Reference https://leanpub.com/dpr
o Software Architect Guides and Templates to Craft Quality Software in Style

 Lecturer, Author, Blogger

endpoint type PaperArchiveFacade

: MDSL serves as INFORMATION HOLDER RESOURCE
* Open Source Contributor exposes))
operation createPaperItem
. Context Mapper with :\?sponsibility STATE_CREATION_OPERATION
. . : expecting
(DSL fOf Domam'Drlven DeSIQn) payload createPaperItemParameter
. L delivering
- API patterns, message/interface description MDSL payload PaperItemDTO

- Interface Refatoring Catalog

- Markdown ADRs, Y-Statements as a compact form of ADRs Roauert
- Lakeside Mutual microservices (sample application)

WWW.api-patterns.orq https://medium.com/olzzio s

Domain Logic

© Olaf Zimmermann, 2023. February 16, 2023

https://leanpub.com/dpr
https://leanpub.com/dpr
https://medium.com/olzzio
http://www.api-patterns.org/

"APIs as Service Activators" at ZEUS 2023

Agenda

« Context and motivation
Stepwise API and service design (by example)

Pattern languages as knowledge brokers

« A pattern language for API design
— Overview, domain model

— Selected patterns
« Refactoring to patterns
 Pattern selection decisions and other hard design concerns (tradeoffs)

« Concluding thoughts
Pattern adoption

Open research questions

© Olaf Zimmermann, 2023. February 16, 2023

"APIs as Service Activators" at ZEUS 2023

Agenda

« Context and motivation
Stepwise API and service design (by example)

Pattern languages as knowledge brokers

« A pattern language for API design
— Overview, domain model

— Selected patterns
« Refactoring to patterns
 Pattern selection decisions and other hard design concerns (tradeoffs)

« Concluding thoughts
Pattern adoption

Open research questions

© Olaf Zimmermann, 2023. February 16, 2023

6

Context and Motivation

Sample Scenario: Conference Management

APl user story 1: As a mobile app for a conference attendees,
| want to download a session overview from the system backend and, on demand, detailed
Information about individual sessions (speaker, title, abstract, time, location, etc.)
so that they enjoy a positive learning experience and find their way through the conference.

APl user story 2: As the review management application at the conference organizer,
| want to move submissions (talk proposals) in the conference management system
through a "receive — review - (accept | reject) — inform — schedule" process
so that a high-quality conference program is assured.

s+, How much time and effort do you need to turn an API user story
N iInto a working Web API prototype (RESTful HTTP)?

© Olaf Zimmermann, 2023. February 16, 2023

Context and Motivation

APl and Service Design Step by Step (Simplified!)

Demo instructions:

https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

User * Agile practice |
Sto ry » Use cases also possible
generate Analysis
Q Model

Design

L Model
generate I

Elaborate version described as SSD activity in DPR:
https://socadk.qgithub.io/design-practice-
repository/activities/SDPR-StepwiseServiceDesign.html

generate
initially

7 | © Olaf Zimmermann, 2023.

generate
stubs

» Domain Driven Design (DDD):
Subdomains, Entities

» DDD: Bounded Contexts with Aggregates
* Bounded Context Types: Feature, System
 JHipster JDL

« MDSL (API Contract DSL)

c API * Open API Specification (OAS), gRPC
ontract Protocol Buffers, GraphQL Schema, ...
: JHipster
SV - Sping Soct

e JUnit

February 16, 2023

https://microservice-api-patterns.github.io/MDSL-Specification/
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://socadk.github.io/design-practice-repository/activities/SDPR-StepwiseServiceDesign.html

Context and Motivation

Initial Design Model (aka Candidate Endpoint List)

sEndpoini Type: Prvate Fronfend ARz
ConferencelanagementSystemAP]

DECISIONS REQUIRED: &

o URI networkAddress

@MubileApmeAﬂendees calls | @ SessionldSet zread-onlysdownloadSessionOverview{attendeeld) /f tbd I LR Gra"”afi“"z
{ » SessionSet eread-only»downloadEntireProgram(attendeeld) // thd ' E?g’g;mmﬁemf""“'
@ SessionDetails eread-only»downloadSingleSessioninformation{ses=sionld) / tbd Securit i =
& eread-writezupdateSubmissionStatusi{sessionld, status) /¥ tbd and mn{é
. e wread-writezaccepi(sessionld) /f tbd
"! o gread-writezreject{zessionld) /7 thd
NV,
How many endpoints
. @ SessionDetailz
and operations? -
int sessionld)
@ SessionSet Str!ng :-;_peal-:erhlam& @ SessionldSet
String fitle
Lizst=Seszion= allsessionzAndTheirDetails String absfractSummary List=int= sessionlds
Time when ;
o? Location where Y/
' and more @
J N
Many small or few large messages? Include nested data or link to it?

8 I © Olaf Zimmermann, 2023. February 16, 2023

Content and Motivation

Sample API: Rapid Prototyping (DEMO)

/ConferenceManagement

. . downloadConferenceProgram (read onl
StorylScenarioRealiza g (y

HTTP command and JSON created with: W tionEndpoint method)
« MDSL Web, MDSL Tools /ConferenceManagement U S
storylScenarioRealiza ifetrr?clﬁf_ alk_proposal (write only
- https://mdsl-web.up.railway.app/ tionEndpoint
L. . Parameters Try it out
* Open API Specification (OAS) tools
. https://editor.swaqger.io/ No parameters
e Next up would be: Request body application/json v

- JUnit tests

Message payload (content)

- APl implementation, e.g. Spring Boot beans Example Value | Schema
@Controller, @Component, @Entity {

"proposal”: {
"sessionName”: “string”,

"sessionTitle": “string”

}

© Olaf Zimmermann, 2023. }

https://mdsl-web.up.railway.app/
https://editor.swagger.io/

Context and Motivation

| API Design is Simple?!

Complexity of systems

Project pressure, legacy constraints Quality goals, security needs

What are the urgent and important questions?

Architectural knowledge helps, even the experienced!
Patterns structure problem and solution domain
and can offer context-specific design guidance.

10 © Daniel Lubke and Olaf Zimmermann, 2023. February 16, 2023

11

Context and Motivation

Why Patterns?

Patterns collect and document experience with proven solutions to common problems

Many templates:

Name, Icon

Context: Intent, Motivation and Applicability
Solution Structure and its Forces
Consequences: Benefits and Liabilities
Examples and Implementation Hints
Pointers to Related Patterns

Known Uses

Community processes/practices:

Shepherding (coaching), writers workshops

© Olaf Zimmermann, 2023.

February 16, 2023

Context and Motivation

(Selected) Existing Patterns Relevant for APl Design

/ / / /
Ihe Slittésors Westey Hegrateere

SERVICE
D ESIGN PATTERNS

GREGOR HOHPE

BorBY WOOLF ROBERT DAIGNEAU
With CONTRIBUTIONS BY » i g € .

KYLE BROWN R e IAN ROBINSON
ConraDp E D'Cruz e '

= ol
MARTIN FOWLER w1 2 Y x /\
SEAN NEVILLE e e PN RD AUEZEN, N 43X \
| —— / - \"-.

MICHAEL J. RETTIG 3
JONATHAN SIMON L = ’ -

Forewords by John Crupi and Martin Fowler

© Olaf Zimmermann, 2023.

Christoph Fehling - Frank Leymann
Ralph Retter - Walter Schupeck
Peter Arbitter

Cloud Computing
Patterns

Fundamentals to Design, Build,
and Manage Cloud Applications

MATERIALS
extras.springer.com

@ Springer

February 16, 2023

Context and Motivation

Enterprise Integration Pattern (2003): Service Activator

o https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessaqingAdapter.html

How can an application design a service to be invoked both via various messaging
technologies and via non-messaging techniques?

—

Request Service Design a Service Activator that connects the
messages on the channel to the service being
he— ta]]][» » accessed.

Renl Service
P Activator

Requestor Feplier

13 © Olaf Zimmermann, 2023. February 16, 2023

https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingAdapter.html

Context and Motivation

Cloud Computing Pattern (2013): Three-Tiered Cloud Application

o https://www.cloudcomputingpatterns.org/three tier cloud application/

How can presentation logic, business logic, and data handling be decomposed into
separate tiers that are scaled independently?

Presentation

g Load Application Component
g Balancer =

Fa

1
1
CHIECE
Stateless User Interfoce

Component Component

scale .

|
[
1
|
1
1 1~
1 I__}
Number of
1
1
[}

Business Logic

Presentation Tier Business Logic Tier ' Data Tier
Application Component

Storage
Dfferings

@8} {8

The application is decomposed into
three [backend] tiers, where each tier

T IS elastically scaled independently.
N

tateless Processing
Component Component

scalet

()
i
Number of
Regquests — gueued — queued —
Elastic Messages Elastic Messages Elastic
Load Balancer . Queue o Queue

14 I © Olaf Zimmermann, 2023. February 16, 2023

https://www.cloudcomputingpatterns.org/three_tier_cloud_application/

"APIs as Service Activators" at ZEUS 2023

Agenda

« Context and motivation
- Stepwise API and service design (by example)

Pattern languages as knowledge brokers

A pattern language for APl design (and message design)
— Overview, domain model

— Selected patterns

Refactoring to patterns

Pattern selection decisions and other hard design concerns (tradeoffs)

Concluding thoughts
Pattern adoption

- Open research questions

15 © Olaf Zimmermann, 2023. February 16, 2023

A pattern language for API design

2016-2022: Microservice API Patterns (MAP)

 Distilled solution patterns from projects

(-) —
- Not invented, but curated (five authors) — et —
Endpoint Roles Representation Elements Quality Management and Governance
- 44 patterns in five categories — ||f—. -
- Focus: architecture (endpoint roles), T
data (message representations), '
VerSIOnIng (evolutlon StrategleS) Version Identifier Two In Production [IIIJ Limited Lifetime Guarantee
. Semantic Versioning Aggressive Obsolescence Eternal Lifetime Guarantee
« API-related concepts, independent SRR T
of (but suited for) specific technologies: U | p
= -
. RESTfUI HTT P’ SOAP g t Parameter Collection ReferenceA Management
N G rath L’ g R PC’ CORBA é] pagination EUIrOPLOP 2017 Linked Information Holder

. . EuroPLoP 2020
- Messaging systems, event streaming =

WWW.api-patterns.org

16 © Olaf Zimmermann, 2023. February 16, 2023

http://www.api-patterns.org/

A pattern language for APl design

A Domain Model for APIs

* From Chapter 1 of "Patterns for API Design"

- Available as sample content at Amazon.com

- Serves as vocabulary in pattern texts

Request/Reply

One-Way
Exchange

composed of

¢

Event
Notiflcation

Conversation

comprises

o
o

Request-
Multlple
Replles

(Callbacks)

17 I © Olaf Zimmermann, 2023.

contains from

Message address Address API Endpoint
0.1 has
- header
- body 1
contains to 01
] address -
has
1--*
Representation Representation
— assembles Element
+ serialize() (Parameter)
+ deserialize()

Command

Message
B
’
;
’
‘
/
,
.
Message . Document
.
~ Message
> - header <|—“,‘—
- body K
4
.

From Enterprise
Integration Patterns

’
#
’ .
I
.
’ -
; ’
-
il #
-
P

Event Message

- Abstracts from remoting technologies such as
REST, gRPC, GraphQL, WSDL/SOARP, ...

— Example API Endpoint corresponds to one or more
HTTP resources (identified by URIS)

— Endpoints expose operations (not shown here)

— Validity demonstrated in MDSL tools that map and
bind API descriptions structured according to this
domain model to these technologies (and more)

February 16, 2023

https://api-patterns.org/book/

A pattern language for APl design

Quality Category

How much data
do API client and

API provider

exchange?
And how often?

18 | © Olaf Zimmermann, 2023.

musting Message Sizes and Number of Reque&

Amount of data per message

more

v

Request
Bundle

less

1 v

= & E

Conditional
Request

1 unchanged

Pagination

1 more

Number of requests

/

include or
exclude data

1 fewer
v

Gternatives for reference managemeh

Embedded Linked

tailor response
message content

v

(Amount of control and expressivim

less 1 1 more
i
=
Wish List Wish Template

\ Entity Information
Holder J

_)

A pattern language for API design

Sample Pattern: Embedded Entity

online version of pattern

= Problem: How can you avoid exchanging multiple

L messages when receivers require insights from

Eﬁ eterences FT\ multiple related information elements?
\ ez | Resource

\ (2)

Response Message

’R%omregﬂwﬁeMatan data type PaperCollectionDTO { "paperCollectionId":D<long>,
<<Embedded_Entity>>
| "referenceEntrylList":PaperItemDTO*}
A) data type PaperItemDTO
contains "referenceEntryId”:D<int>,) T
-:, Eauthorsr,:[,<st,,iﬁg>*, Forces: Performance, scalability;
| .
- "title":D<string> fl haili H 4 H .
r —— e i exibility and modifiability; data
Embedded Entity (Relatet;i venu? :D<5tr'1ng>: . y _y’
R R tati " w, .
esource Representation ”pu?ililsher :D<str'1ng>_, quallty’ freshness’ ConSIStenCy-
doi":D<string>}

Solution: For any relationship that the client has to follow, embed a
Data Element in the message that contains the data of the target entity
(instead of linking to the target entity).

19 | © Olaf Zimmermann, 2023. February 16, 2023

https://microservice-api-patterns.org/patterns/structure/elementStereotypes/DataElement
https://microservice-api-patterns.org/patterns/quality/referenceManagement/EmbeddedEntity

A pattern language for API design

Sample Pattern: Linked Information Holder

Problem: When exposing structured, possibly deeply
nested information elements in an API, how can you avoid Forces: Same as for

sending large messages containing lots of data that is not Embedded Entity.
always useful for the message receiver in its entirety?

data type PaperDirectory { "paperCollectionId":D<long>, Client Response Message
= 3 1y
<<Linked_Information_Holder>>) Proxy —— ’ Resource Representation

"referenceEntryPointer”:PaperItemInformationHolderLink*} 1 = 4 1 j
data type PaperItemInformationHolderLink { |! J !

<<Link_Element>> "uri":L<string> | /(3) follow link /(2) | ontains
} [I e !
£ T |
. . 1 |)
online version of pattern eterences [moors W tinks 1o . ¥

Resource - =~ — = - Resource (fF ~ ="~~~ ~~ ﬂLlnk Element (Address of Related Resource)

Solution: Add a Link Element to the message that references an API endpoint. Let this API endpoint represent

the linked entity; for instance, use an Information Holder Resource for the referenced information element.

20 | © Olaf Zimmermann, 2023. February 16, 2023

https://microservice-api-patterns.org/patterns/structure/elementStereotypes/LinkElement
https://microservice-api-patterns.org/patterns/responsibility/endpointRoles/InformationHolderResource
https://microservice-api-patterns.org/patterns/quality/referenceManagement/LinkedInformationHolder

A pattern language for APl design

Sample Pattern: Pagination (1/2)

 Context:

- An API endpoint and its calls have been identified and specified.

* Problem:

How can an API provider optimize a response to an API client that should deliver large amounts of data
with the same structure?

 Forces:

Data set size and data access profile (user needs), especially number of data records required to be
available to a consumer

Variability of data (are all result elements identically structured? how often do data definitions change?)
Memory available for a request (both on provider and on consumer side)
Network capabilities (server topology, intermediaries)

Security and robustness/reliability concerns

21 © Olaf Zimmermann, 2023. February 16, 2023

A pattern language for APl design

Sample Pattern: Pagination (2/2)

Solution:

Divide large response data sets into manageable and easy-to-transmit chunks.

Send only partial results in the first response message and inform the consumer how additional results
can be obtained/retrieved incrementally.

Process some or all partial responses on the consumer side iteratively as needed; agree on a request
correlation and intermediate/partial results termination policy on consumer and provider side.

Variants:

Cursor-based vs. offset-based

Consequences:

E.g. state management required

Know Uses:

Public APIs of social networks

22 © Olaf Zimmermann, 2023. February 16, 2023

A pattern language for APl design

Sample Pattern: Wish List (1/2) E

* Problem:
How can an API client inform the API provider
at runtime about the data it is interested in? & N
% N
* Forces (selection): 'é
Client diversity, message size vs. number of messages N
-0

Endpoint complexity

* Solution:

As an API client, provide a Wish List in the request that enumerates all
desired data elements of the requested resource.

https://api-patterns.org/patterns/quality/dataTransferParsimony/WishList

23 | © Olaf Zimmermann, 2023. February 16, 2023

https://api-patterns.org/patterns/quality/dataTransferParsimony/WishList

A pattern language for API design

Sample Pattern: Wish List (2/2)

« Known uses: « Example:

- Found in many Web and product APIs, e.g.
Atlassian Jira curl -X GET

http://localhost:8080/customers/gktlipwhjr?fields=

 Variations: customerld,birthday,postalCode

- Expansion, wild cards (*), query expression

| {
(GraphQLY) "customerld": "gktlipwhjr",
. Alternative: "birthday": "1989-12-31T723:00:00.000+0000",
"postalCode"; "8640"
- Wish Template (structured, mock object }

rather than flat name list)

© DHaf ZinImermann, 2023. February 16, 2023

A pattern language for API design

Website and Book: api-patterns.org

PATTERNS FOR
API DESIGN

SIMPLIEYING INTEGRATION
wWITH LOOSELY COUPLED
MESSAGE EXCHANGES

OLAF ZIMMERMANN

Our Book "Patterns for API Design"

P

Simplifying Integration with Loosely Coupled Message Exchanges, Addison-Wesley Professional, Vaughn

Vernon S|gnature Series (November 8' 2022) API Visibility API Direction Basic M ge Structure
=2 [\ @
B | | see 3 -0
S [~ -0
Public Community Solution Frontend Backend Atomic Atomic Parameter Parameter
API API Internal API Integration Integration Parameter Parameter List Tree Forest
RGSOUTCGS 9 Endpoint Roles and Operation Responsibilities
o4 - o] & 2 +) [-
¢S < %) &Y &y &Y &)] |
Processing Information Data Transfer Link Lookup Computation State Creation Retrieval State Transition Operational Master Reference
Resource Holder Resource Resource Function Operation Operation Operation Data Holder Data Holder Data Holder
Resource
Designing Request and Response Refine Message Design Decide on Document
Message Representations for Quality API Evolution Strategies API Contract
— Linked Yyl ¥ v v
Pagination Embedded inke ? x
Entity Information

Experimental Aggressive Two in API Service Level

APl Key Error Context Holder
Report Representation o Preview Obsolescence Production Description Agreement
I:> @ "
m

‘ @ ‘ ‘ o ’ {@ ’ ‘ @J Conditional Request

Request Bundle
Data Metadata Id Element Link Element = '%'E Limited Semantic Pricing Plan Rate Limit
Element Element -0 Lifetime Version Versioning
= = Guarantee Identifier

© Olaf Zlmmermann, 2023 Wish List Wish Template February 16, 2023

26

"APIs as Service Activators" at ZEUS 2023

Agenda

« Context and motivation
- Stepwise API and service design (by example)

Pattern languages as knowledge brokers

« A pattern language for API design (and message design)
— Overview, domain model

— Selected patterns
- Refactoring to patterns
 Pattern selection decisions and other hard design concerns (tradeoffs)

« Concluding thoughts
Pattern adoption

- Open research questions

© Olaf Zimmermann, 2023.

February 16, 2023

https://interface-refactoring.github.io/ (joint work with Mirko Stocker)

Interface Refactoring Catalog (Emerging)

News (08/2022): The patterns featured in this catalog form the core of a new book in Vaughn Vernon's Signature

Series at Pearson, scheduled for publication in December 2022. Read more about these exciting news on the API
design patterns website.

Published Refactorings

An overview of the refactorings, set in italics, is (links available on the Refactorings by Target page):

Endpoint Refactorings: «basicConcept»
* Rename Endpoint Endpoint

~ Merge Endpoints . Address location

* Segregate Commands from Queries MAPDecorator role

Operation Refactorings: - Y

* Extract Endpoint «basicConcept»

* Move Operation Operation

* Rename Operation String name

| ST CREE LT MAPDecorator responsibility

— Message Refactorings: Message Refactorings:
«basicConcept» * Add Wish List * Introduce Data Transfer Object «basicConcept»
RequestMessagePayload * Add Wish Template * Extract Information Holder ResponseMessagePayload
KeyValuePairs protocolHeaders * Bundle Requests * Inline Information Holder KeyValuePairs protocolHeaders
RepresentationElements responsePayload * Make Request Conditional _ * Introduce Pagination RepresentationElements requestPayload
* Externalize Context Representation * Rename Representation Element

27 | © Olaf Zimmermann, 2023. February 16, 2023

https://interface-refactoring.github.io/

https://interface-refactoring.github.io/ (joint work with Mirko Stocker)

From API Design Smells to Refactorings: Smell Browser

API does not get to the POINT 2 Atomicity and consistency management 1 Change log jitter or commit chaos 1
issues

Client community smaller than expected 1 Cloud-native traits violated 1 Combinatorial explosion of input options 1

Cryptic or misleading name 2 Curse of knowledge 2 Data lifetime mismatches 2

Endpoint implementation spaghetti 1 Evolution strategy does not match client 1 Extreme decomposition 1

expectations

Feature/release inertia a.k.a. stale roadmap 2 God endpoint 2 High coupling 1

High latency/poor response time 4 Lack of trust and confidence 1 Large and/or partially unknown user base 1

Leaky encapsulation 3 Low cohesion 1 Overfetching 3

Polling proliferation 1 Quality-of-Service (QoS) fragmentation and 1 REST principle(s) violated 2
scattering

Resistance to change caused by uncertainty 3 Role and/or responsibility diffusion 4 Same backend system and/or domain data 1

processed by multiple endpoints

Security by obscurity 1 Single responsibility spread 2 Sloppy or ill-motivated naming conventions 1
Structured artifact serialized and therefore 1 Tacit semantic changes up to 1 Tight coupling of data contract 1
strangled incompatibilities creep in

Tight coupling to a communication protocol 1 Too coarse-grained security or data privacy 2 Underfetching 3

28 | © Olaf Zimmermann, 2023. February 16, 2023

https://interface-refactoring.github.io/

Refactoring to patterns

MDSL Web: Refactorings as Model Transformations

API description APISupportingConferenceManagementStoryl
data type SessionInformation {"sessionId":D, "title":D, "abstract":D, "speaker":D, "time":D , "location":D}

endpoint type ConferenceManagementStorylScenarioRealizationEndpoint supports scenario ConferenceManagementStorylScenario
exposes
operation downloadSessionInformation with responsibility RETRIEVAL_OPERATION
expecting payload "attendeeId": ID<int>
ConferenceMani delivering payload SessionInformation*

Target Endpoint:

Target Operation: scenario ConferenceManagementStorylScenario

. story ConferenceManagementStoryl
downloadseSSIOI n n n - - mn - " . n m - mw n n m mw
a "ConferenceManagementApp"” wants to "downloadSessionInformation"” with "sessionId" and "title" and "abstract" and "speaker

Refactoring/Transformation (Reference: Interface Refactoring Catalog, MDSL Transformations):

) Refactor/Transform Move to IDL Generation and Download >

Both forward engineering and refactoring

supported by MDSL transformations https://mdsl-web.up.railway.app

29 | © Olaf Zimmermann, 2023. February 16, 2023

https://mdsl-web.up.railway.app/

30

"APIs as Service Activators" at ZEUS 2023

Agenda

« Context and motivation
. Stepwise API and service design (by example) https://adr.github.io/

Pattern languages as knowledge brokers

« A pattern language for API design (and message design)

— Overview, domain model

~ Selected patterns (€)mADR () statement (€) Nygard

« Refactoring to patterns
« Pattern selection decisions and other hard design concerns (tradeoffs)

« Concluding thoughts
Pattern adoption

- Open research questions

© Olaf Zimmermann, 2023. February 16, 2023

https://adr.github.io/

Architectural Decisions

My Architectural Decision (AD) Journey 1998 — 2022

Templates, IEEE 42010 Chapter 3: 29
AR;T:-l\(;)\? AaD 26 recurring decisions ADMentor (UML Profile, EA Plugin) %attern ?\Ds,
table (Word) listed (WSDL, SOAP, ...) ——= narratives
Bachelor Lecture MADR
: AppArch, Applied Project
EAM Project, Research & Dev. (2017- Patterns for API
PowerPoint table Design Book
IBM SI Method, Perspectives on (2013-present) present) (2022)
Architectural Web Services
Thinking Class Book Y-Statements
(since 1998) (Springer 2003) (ABB, 2012)

.md template, tools

JEE. Web SOAD PhD, SDA: Blog posts Y-Artifact,
Services and IBM Reference (2020-present) ADR activity
SOA client Architectures, ASR Test, DoD, ... i
projects Guidance Models,
(IBM, App. Wiki, Tool . .
' Design Practice
1999-2005) Prototypes g

Repository and Design
] Practice Reference

1 (2006-2011)

. . 100+ recurring ADs modelled
ADs inlined in SAD

(Issues, Alternatives, Outcomes) eBook (LeanPub, 2021)

31 I © Olaf Zimmermann, 2023. February 16, 2023

Architectural Decisions

Y-Template (ABB Software Dev. Improvement Initiative)

Reference: ABB, SATURN 2012

In the context of <use case uc

... facing <non-functional concern c>,
and/or component co>,

... we decided for <option 01> and neglected <options 02 to on>,

... to achieve <quality q>,

... accepting downside <consequence c>.

(somewhat) adopted by the community, examples:
https://cards42.org/#adr and https://herbertograca.com/2019/08/12/documenting-software-architecture/

32 | © Olaf Zimmermann, 2023. February 16, 2023

https://cards42.org/#adr
https://herbertograca.com/2019/08/12/documenting-software-architecture/

Architectural Decisions

Exercise: API Design with Patterns (Sample System)

 Let's capture a pattern selection AD (in the Conference Management scenario)

See Chapter 3 of our book for examples ©

In the context of API user story 1 facing client diversity, (sometimes) slow networks
(session information download), and sub-second response time requirements,

we decided to expose two
Retrieval Operations in the API
endpoint, one embedding detailed
information and one linking to it

and neglected usage of other quality patterns
(such as Wish List and Pagination)

to achieve the required performance and a splendid developer experience,

accepting that implantation and test effort
almost doubles.

33 © Olaf Zimmermann, 2023. February 16, 2023

Architectural Decisions

Markdown Architectural/Any Decision Records (MADR)

Title Metadata: Status, Date, Stakeholders (Deciders, Consulted, Informed)
Decision o Options Pros
Context Drivers Decision o and Cons
and Outcome Consequences Validation
Problem (_vyith_ (Good, Bad) (Review,
Statement || Considered || Justification) Test) More
Options Information

Where is the Markdown?
[In the GitHub repo](https://madr.hithub.io)

"The Markdown ADR (MADR) Template Explained and Distilled"” on Medium has details

... and there is a ZEUS 2018 paper about template, concepts, tools (Oliver Kopp et al)

34 © Olaf Zimmermann, 2023. February 16, 2023

https://medium.com/olzzio/the-markdown-adr-madr-template-explained-and-distilled-b67603ec95bb

Architectural Decisions

API/Service Design: The Hard Parts Soffwore
Architecture:
Video by Neil Ford, TL;DR: "tradeoffs, always" The Hard Parts

Modern Trade-Off Analyses for Distributed
Architectures

« Communication

- Synchronous vs. asynchronous

Neal Ford,
Mark Richards,
b Pramod Sadalage &
Zhamak Dehghani

e Coordination

- Central(ized) vs. decentral(ized)

* Lonsistency q What is the relationship
NV,

between these recurring ADs
and API design?

— Strict vs. eventual

' What are the pros and cons of these options?

<

35 I © Olaf Zimmermann, 2023. February 16, 2023

https://www.youtube.com/watch?v=v55IV8IhwKM

36

Architectural Decisions in API Design

Frontend BPM vs. BPM-as-a-Service

Business Activity Processor variant of
State Transition Operation pattern

Book, website archive, EuroPLoP 2020 paper

Each API operation realizes one state
transition, whose mileage may wary:

Entire business process

Single activity
General state machine to be adapted
according to domain requirements

E.g. DDD, Context Mapper DSL and tools

Technology mapping:
HTTP POST, PUT, PATCH
Mutations in GraphQL

© Olaf Zimmermann, 2023.

undo

. Initial
[

prepare

Ready

start

Running suspend Suspended
resume
complete
fail restart restart
cancel Aborted

cleanup cleanup cleanup

Final

February 16, 2023

https://api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation
https://web.archive.org/web/20220224172623/https:/microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation#sec:StateTransitionOperation:Solution

37

"APIs as Service Activators" at ZEUS 2023

Agenda

« Context and motivation
Stepwise API and service design (by example)

Pattern languages as knowledge brokers

« A pattern language for API design
— Overview, domain model

— Selected patterns
« Refactoring to patterns
 Pattern selection decisions and other hard design concerns (tradeoffs)

« Concluding thoughts
Pattern adoption

Open research questions

© Olaf Zimmermann, 2023.

February 16, 2023

Concluding Thoughts

m Q Search ﬁ :' Qb @ -’- (9
Jobs

a
Home My Network Messaging Notifications Me ¥

Discussion API Design Pattern of the Week:
Pagination
Do the patterns names work for you? 2 tatarice. 1 View sas

. Olaf Zimmermann
‘,_' Y-Statement ADRs, API Patterns, DDD MADR (pronounce .matter”) when you 3 articles
architecture designs

go deeper in your software

Do the presented solutions make sense?

February 10, 2023

® Wh IC h patte rnS m Ig ht be m ISSI n g f) The first pattern in this series was Wish List. This week's pattern also aims at
) reducing response message size (aka Data Parsimony or "Datensparsamkeit"). It is
very commonly seen in many APIs, but not as easy to realize as it might seem.
[J

Pros and cons of the options

boratig,
ﬂp‘:\a ’ ‘;7455

- for API design/architecture decisions

Sample scenarios

38 © Olaf Zimmermann, 2023. February 16, 2023

https://www.linkedin.com/pulse/api-design-pattern-week-pagination-olaf-zimmermann/?trackingId=VuCB%2B5fbRvWu68S6ccky0w%3D%3D

Concluding Thoughts

Ongoing Research, Future Research Topics

« API refactoring, architectural refactoring knowledge and tools

First slice of catalog submitted to EuroPLoP 2023

« Language, framework and tool support for the patterns

MDSL, Jolie (a microserivce programming language)

« Methods and tools for reengineering "monolith to microservices"

Bring back the notion of guidance models (ADs first)? See Chapter 3 of our book.
« Events and APIs (aka asynchronous integration)
« AI/ML for API design and documentation?

 Ethical (Empathic?) Software Engineering

39 I © Olaf Zimmermann, 2023. February 16, 2023

Concluding Thoughts

More Information: api-patterns.org and blogs

 https://ozimmer.ch/blog/ und (shortened subset) https://docsoc.medium.com/

Questions to Ask when
Migrating to the Cloud

Cloud-Native Application (CNA) has

been a trending buzzword in blogs,

O |
\

e

books and articles for several years

v
0,
(

now. But what about migrating an

application to the...

Olaf and Mirko
Updated: 05 Oct 2022
Published: 29 Sep 2022

ACTOSEIVIL.
APl Patterns

https://microservice-api-
patterns.org/publications

40 © Olaf Zimmermann, 2023.

Introduction to Microservice API Patterns (MAP)

Olaf Zimmermann
University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
ozimmerm@hsr.ch

Mirko Stocker © T s 2 s
University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland -
mirko.stocker@hsr.ch

Daniel Liibke

Microservice API Patterns

iQuest GmbH, Hanover, Germany
ichi@daniel-luebke.de

Cesare Pautasso
Software Institute, Faculty of Informatics, USI Lugano, Switzerland
c.pautassoliicee.org

Uwe Zdun
University of Vienna, Faculty of Computer Science, Software Architecture Resear *
Vienna, Austria

uwe.zdun@iunivie.ac.at

Abstract

The Microservice API Patterns (MAP) language and supporting website premiered
at Microservices 2019, MAP distills proven, platform- and technology-indepen:

. .
recurring (micro-)service design and interface specification problems such as fir Mlcrosewlce API Pauerns: A
service granularities, rightsizing
their implementations. In this paper, we motivate the need for such a pattern | f API D -
the language organization and present two exemplary patterns describing alterr Language or eslgn

representing nested data. We also identify future research and development direc

representations, and managing the evolu

2012 ACM Subject Classification Software and its engineering — Patterns; Softw
eering —+ Designing software

1.1K views * 8 months ago

Keywords and phrases application programming interfaces, distributed systems, enterprise applica-
tion integration, service-oriented computing, software architecture

Digital Object Identifier 10.4230/0ASIcs Microservices. 2017-2019.4

https://www.youtube.com/watch?v=cNp7ys0q0Bs

February 16, 2023

https://ozimmer.ch/blog/
https://docsoc.medium.com/
https://microservice-api-patterns.org/publications
https://www.youtube.com/watch?v=cNp7ys0g0Bs

Order & Save 35%*
on eBook at

PATTERNS FOR iInformit.com/api-patterns
API DESIGN

* Use code API-PATTERNS during checkout
SIMPLIFYING INTEGRATION

wITH LoosSELy COUPLED
MESSAGE EXCHANGES

» Offer only good at informit.com
 eBook — DRM-Free PDF & EPUB

——— = oy Print books available**

OLAF ZIMMERMANN /"\ ‘ Please check your local or online store where you
MIRKO STOCKER purchase technical related books.

DANIEL LUBKE

UwEg ZDUN

\i *Discount code API-PATTERNS is only good at informit.com and cannot be used
CESARE PAUTASSO B

i-.

B

on the already discounted book + eBook bundle or combined with any other offer.
Discount offer is subject to change.

**|f your order print books from InformIT, your order is subject to import duties
and taxes, which are levied once the package reaches the destination country.

P

